Enhanced Fatty Acid Oxidation and FATP4 Protein Expression after Endurance Exercise Training in Human Skeletal Muscle
نویسندگان
چکیده
FATP1 and FATP4 appear to be important for the cellular uptake and handling of long chain fatty acids (LCFA). These findings were obtained from loss- or gain of function models. However, reports on FATP1 and FATP4 in human skeletal muscle are limited. Aerobic training enhances lipid oxidation; however, it is not known whether this involves up-regulation of FATP1 and FATP4 protein. Therefore, the aim of this project was to investigate FATP1 and FATP4 protein expression in the vastus lateralis muscle from healthy human individuals and to what extent FATP1 and FATP4 protein expression were affected by an increased fuel demand induced by exercise training. Eight young healthy males were recruited to the study. All subjects were non smokers and did not participate in regular physical activity (<1 time per week for the past 6 months, VO(2peak) 3.4±0.1 l O₂ min⁻¹). Subjects underwent an 8 week supervised aerobic training program. Training induced an increase in VO(2peak) from 3.4±0.1 to 3.9±0.1 l min⁻¹ and citrate synthase activity was increased from 53.7±2.5 to 80.8±3.7 µmol g⁻¹ min⁻¹. The protein content of FATP4 was increased by 33%, whereas FATP1 protein content was reduced by 20%. Interestingly, at the end of the training intervention a significant association (r² = 0.74) between the observed increase in skeletal muscle FATP4 protein expression and lipid oxidation during a 120 min endurance exercise test was observed. In conclusion, based on the present findings it is suggested that FATP1 and FATP4 proteins perform different functional roles in handling LCFA in skeletal muscle with FATP4 apparently more important as a lipid transport protein directing lipids for lipid oxidation.
منابع مشابه
The Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...
متن کاملConjugated linoleic acid supplementation enhances insulin sensitivity and peroxisome proliferator-activated receptor gamma and glucose transporter type 4 protein expression in the skeletal muscles of rats during endurance exercise
Objective(s):This study examined whether conjugated linoleic acid (CLA) supplementation affects insulin sensitivity and peroxisome proliferator-activated receptor gamma (PPAR-γ) and glucose transporter type 4 (GLUT-4) protein expressions in the skeletal muscles of rats during endurance exercise. Materials and Methods:Sprague-Dawley male rats were randomly divided into HS (high-fat diet (HFD) s...
متن کاملCoimmunoprecipitation of FAT/CD36 and CPT I in skeletal muscle increases proportionally with fat oxidation after endurance exercise training.
Although the increase in fatty acid oxidation after endurance exercise training has been linked with improvements in insulin sensitivity and overall metabolic health, the mechanisms responsible for increasing fatty acid oxidation after exercise training are not completely understood. The primary aim of this study was to determine the effect of adding endurance exercise training to a weight loss...
متن کاملRelationship between FAT/CD36 Protein in Skeletal Muscle and Whole-body Fat Oxidation in Endurance-trained Mice
Purpose We investigated the effects of endurance training on the expression of long-chain fatty acid transport proteins in the skeletal muscle and whole-body fat oxidation during endurance exercise. Methods Seven-week-old male ICR mice (n = 12) were divided into 2 groups, namely, Sed (sedentary; non-trained) and Tr (endurance-trained) groups. The Tr group was adapted to treadmill training at ...
متن کاملEndurance training reduces the contraction-induced interleukin-6 mRNA expression in human skeletal muscle.
Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to...
متن کامل